Course Code	Course Name	Credits
MELO8062	Design for X	03

Objectives:

- 1. To acquaint the learners with the concept of designformanufacturing and assembly
- 2. To acquaint the learners with the concept of design for reliability and maintainability
- 3. To study the product development economics.

Outcomes: Upon successful completion of this course, the learner will be able to

- 1. Applydesignconcepts and guidelines formanufacturing and assembly.
- 2. Demonstrate the concept of value analysis and its relevance.
- 3. Understand the economics of product development
- 4. Applydesignconceptsforreliability and maintainability

Module	Contents	Hours
1.	DESIGNFORMANUFACTURE:	05
	General design principles for manufacturability-strength and mechanical factors,	
	mechanisms selection, evaluation method, Processcapability-Feature tolerances-	
	Geometrictolerances-Assembly limits—Datum features-Tolerance stacks	
2.	DESIGN FOR ASSEMBLY:	08
	Assembly processes-Handling and insertion process-Manual, automatic and robotic	
	assembly-Cost of Assembly-Number of Parts-DFA guidelines	
3.	VALUEENGINEERING:	08
	Introduction to Value Engineering and Value Analysis, Valuetypes-functional-operational-	
	aesthetic, Value engineering in product design; Advantages, Applications in product	
	design, Problem identification and selection, Analysis of functions, Anatomy of	
	function. Primary versus secondary versus tertiary/unnecessary functions, Functional	
	analysis: Functional Analysis System Technique (FAST), Case studies.	
4.	PRODUCTDEVELOPMENTECONOMICS:	08
	Elements of Economics Analysis-Quantitative and qualitative analysis-Economic	
	Analysis Process-Estimating magnitude and time of future cash inflows and outflows-	

	Sensitivity analysis-Projecttrade-offs-Trade-offs rules-Limitation of quantitative analysis-Influence of qualitative factors on project success	
5.	CONCEPTOFRELIABILITY: Introduction:The study of Reliability and Maintainability, Concepts, Terms and Definitions, Applications, The Failure Distribution:The reliability Function, Mean Time to Failure, Hazard Rate Function, Bathtub Curve, Conditional Reliability	05
6.	MAINTAINABILITY: Analysis of down time, Report Time Distribution, Stochastic Point Processes, Reliability under Preventive Maintenance, State-Dependant System with Repair, Design for Maintainability.	05

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks.
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum.
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References:

- 1. HarryPeck,DesigningforManufacture,PitmanPublications,1983.
- 2. GeorgeEDieter,EngineeringDesign,McGraw-HillInt Editions,2000
- 3. S.S.Iyer, ValueEngineering, NewAgeInternational, 2000
- 4. CharlesE.Ebeling, AnIntroduction to Reliability and Maintain ability Engineering, TMH2000.